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Abstract

This paper describes our participation in INEX (the Ini-
tiative for the Evaluation of XML Retrieval) and dis-
cusses several aspects of our XML retrieval system: the
retrieval model, the document indexing and manipula-
tion scheme and our preliminary evaluation results of
the submitted three runs.

In our system, we have used a probabilistic retrieval
model where we map dimensions of relevance to (possi-
bly structural) properties of documents and use these di-
mensions of relevance for retrieval purposes. The study
concentrates on coverage, a measure reflecting how fo-
cused the component is on the given topic while con-
sidering that it should serve as an informative unit to
be retrieved by itself. We also discuss an efficient and
database-independent indexing scheme for XML docu-
ments, based on text regions and discuss region opera-
tors for selection and manipulation of XML document
regions.

1 Introduction

This paper describes our participation in INEX (the Ini-
tiative for the Evaluation of XML Retrieval). We partic-
ipated with our XML retrieval system, built on top of a
research database kemel, MonetDB.

The primary goals for participation in the XML Re-
trieval Initiative were 1) to gain experience in informa-
tion retrieval of documents possessing various degrees
of semantic structure, 2) to look for possibilities to in-
troduce structural properties of documents into proba-
bilistic retrieval models and 3) to examine whether the
use of structure information can improve retrieval per-
formance.

The construction of any information retrieval system
(and as such an XML retrieval system) can be thought of
to address three components: document representation,

the retrieval model and query formulation. Document
representation defines the logical and physical represen-
tation of documents in a retrieval system. ‘Flat’ doc-
uments are mostly represented with techniques such as
inverted lists, but in the case of structured documents we
need to represent the structural aspects of documents as
well.

The use of structure plays a possible role as well in
addressing the second component, the definition of the
retrieval model. The basis for our model is a probabilis-
tic retrieval model, the statistical language model devel-
oped by Hiemstra [11].

The third component deals with query formulation.
The extra dimension of structure in XML documents
plays a role here as well: how is structural information
integrated in the query possibilities and in what sense do
query formulation possibilities depend on user knowl-
edge of the structure(s) present in the collection?

The main contributions of this paper are twofold. We
present an efficient and database-independent indexing
scheme for XML documents based on XML document
regions. We then describe a probabilistic retrieval model
where we map (structural) properties of documents to di-
mensions of relevance and use these dimensions of rele-
vance for retrieval purposes. The study concentrates on
coverage, a measure describing how much of the docu-
ment component is relevant to the topic of request while
also considering that it should serve as an informative
unit to be retrieved by itself.

2 The Retrieval Model

Research in the user modeling and concept of rele-
vance areas (see e.g. [3, 4, 5, 2]) suggests that rele-
vance is a multidimensional concept of which topical-
ity (i.. content-based relevance) is only a single one.
Mizarro [ 6] names other, possible non-topical dimen-
sions abstract characteristics of documents constructed



independently from the particulars of the database or
collection at hand. In other words: other, non-topical
dimensions are constructed independently from the lan-
guage models present in the documents of a collection,
suggesting orthogonality between the topicality dimen-
sion and any additional dimensions. Examples of other,
non-topical dimensions include comprehensibility (style
or difficulty of the text) and quantity (how much infor-
mation does the user want; measured by e.g. the size of
documents and the number of documents returned to the
user).

Additional dimensions of relevance become more im-
portant for structured document retrieval. Retrieval units
can vary in granularity and hence vary in the amount of
information offered to the user. This varying amount
of information highly likely causes a user to judge the
relevance of document components on more properties
besides topicality alone.

We model dimensions of relevance with a set of
independent probabilities (assumed independent given
a document instantiation) in a probabilistic retrieval
model. The research question is whether we can effec-
tively map dimensions of relevance to document prop-
erties (structural or otherwise) that in turn can be repre-
sented by (probabilistic) entities in the retrieval model.
The results reported here investigate a combination of
quantity and topicality, visualized in Figure |; aiming to
capture the notion of coverage used in the evaluation.

2.1 A Motivating Example

In INEX, retrieval results are judged on two aspects:
relevance and coverage. Relevance is aimed to reflect
how exhaustively a topic is discussed within a doc-
ument component; coverage reflects how focused the
component is on the given topic, considering that it also
serves as an informative unit. The INEX relevance as-
sessment guide [!] defines relevance and coverage on a
four degree scale: relevance levels of 0 (irrelevant), 1
(marginally relevant), 2 (fairly relevant), and 3 (highly
relevant), and coverage of N (no coverage), E (exact), S
(too small) and L (too large). With the combination of
these measures it is possible to identify document com-
ponents that satisfy both topicality and quantity.
Consider the example document in Figure 2. Say
that the system that estimates topicality identifies one
relevant subsection in the first section and one relevant
subsection in the second section. The open question is
then whether to return the two separate subsections, or
the separate sections or single body containing these as
well as the remaining (possibly irrelevant) subsections
(i.e. what is the retrieval unit?). The additional context
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Figure 1: Encoding of additional relevance dimensions.
Note that Qterms and Osize denote information given by
the query (query terms and preferred component size).

AR

Figure 2: Running example XML syntax tree.

provided by the full sections or body may be more de-
sirable for a user than the individual two subsections in
isolation.

We approach the problem of chosing the best accept-
able retrieval unit by optimizing on both topicality and
size of document components:

e the shorter the document component, the more
likely it will not contain enough information to ful-
fill the information need (the component may be
less exhaustive, e.g. relevance level 1 or 2, and ’too
small’, coverage grade S);

o the longer the document component, the more
likely that distilling the topically relevant informa-
tion will take substantial more reader effort (the
component may be more exhaustive, €.g. relevance
level 3, but *too large’, grade L on the INEX cov-
erage scale).

We therefore rank the documents in a collection
against a combination of topicality and quantity (where
the user uses document component size as a representa-
tion of quantity). In probabilistic terms, we calculate the
probability of complete relevance of a document com-
ponent, given its probability of relevance on both the
topicality and the quantity dimensions.'

'Here, ‘complete relevance’ covers all dimensions of relevance,
unlike the ‘exhaustiveness only’ notion of relevance used in INEX.
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Figure 3: The log-normal distribution used for model-
ing the quantity dimension

2.2 Modeling Relevance Dimensions

The model in Figure | leads to the following. When
P(R;|D,) is the probability of topical relevance given
document d and P(R,4|Dy) is the probability of quan-
tity relevance given document d, then we can calculate
a joint probability of ‘complete’ relevance or user satis-
faction as:

P(Dd,Rzg, Rq, Qterms) Qsize) =
P(Rt|DdaQterms)P(quDd,Qsize)P(Dd)

Looking at the motivating example in subsection 2.1 and
especially the user reasoning for modeling the quantity
dimension, we decided to use a log-nomal distribution
as in Figure 3. The steep slope at the start reflects the
pruning we want to model for (extremely) short docu-
ment components since short components are unlikely to
be good retrieval units. The long tail reflects that we do
want to prune out very long document components, but
not as rigorously as extremely short ones. Long com-
ponents might be useful, even while taking more reader
effort to distill the relevant information.

We also need a modeling parameter for the distribu-
tion itself. We have chosen component size, but other
possibilities include:

o the depth of the document component in the tree
structure, where we want to penalize components
present deep in the trees (generally small compo-
nents and too specific) or components present high
in the trees (generally large components and too
broad);

o the number of children of a document component.
A short document component containing a large
amount of children highly likely contains a diver-
sified mix of information and a could be less desir-

able for a user than a more homogeneous compo-
nent.

2.3 Modeling Topicality

The model used for describing topicality of documents
is a probabilistic model, the statistical language model
described by Hiemstra [ | 1 ]. The main idea of this model
is to extract and to compare document and query models
and determine the probability that the document gener-
ated the query. In other words, the statistical language
model extracts linguistic information and is suited for
modeling of the topicality dimension of the information
need.

In deriving document models for all of the documents
in the collection, we regarded every subtree present in
the collection as a separate document. The probability
of topical relevance P(R;|Dg, Qterms) Where Qrerms
consists of the set of query terms {T';,---, T, } is cal-
culated with:

P(RtlDd;Qterms) = P(Rt|Dd:Tl1 T 1Tn)

= P(Da) ﬁ P(L;)P(Ti|I;, Da)

=1

where P(I;) is the probability that a term is important
(the event I has a sample space of {0, 1}).

We follow the reasoning of Hiemstra [1 |] to relate the
model to a weighting scheme (tf.idf-based). After some
manipulation of the model we get:

P(Ddely"' aTn) X

P(Da) g(l + %)

As estimators for P(Dy), P(T;|Dy) and P(T;) we
used:

1

P(Dy) = - (1

tfi.d
Zi tfi,d

where n is the number of documents, tf; 4 is the term
frequency of term 4 in document d and 3, tf (i, d) is
the length of document d.

For P(T;) we used:

PT) = <L

Ez’di

P(Ti|Dg) = @
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where df; is the document frequency of term .

Filling in the likelihood estimators gives us the fol-
lowing model for topicality (with a constant A for all
terms):

P(Rt[de Qterms) = P(RtlDd,Tla s 1Tn)
= A tha Y df:
x ;log@—i- T3%, tha df )

We used a very simple query model resulting in query
term weights represented with ¢f; o, the term frequency
of term 1 in query q.

3 XML Document Indexing and
Manipulation

3.1 Document Model

Generally, XML documents are represented as rooted
(syntax) trees and indexing schemes focus on the stor-
age of the edges present in the syntax tree, combined
with storage of the text present. One of these approaches
is described by Schmidt [17], which we used as a start-
ing point for our own indexing scheme. In Schmidt’s
approach, each unique path is stored in a set of binary
relations where each binary relation represents an edge
present in the path. Furthermore, multiple instances of
the same path (even if they are present in different syn-
tax trees) are stored in the identical set of relations. The
system also maintains a schema of the paths present and
their corresponding relations: the path summary.

The advantage of Schmidt’s approach is that the exe-
cution of pure path queries can be performed efficiently;
selecting the nodes belonging to a certain path prevents
a forced scan of (large) amounts of irrelevant data, re-
quiring only a fast lookup in the path summary to get to
the relation required. The disadvantage is that the gener-
ation of the transitive closure of a node is an expensive
operation. In database terms: the transitive closure is
the union of the separate paths present in the compo-
nent. The reconstruction of each path is performed with
join operations, where the number of join operations de-
pends on the number of steps present in the path.

Since we need fast access to the component text for
determining statistics, we pursued another approach. In-
stead of seeing an XML document instance as a syn-
tax tree, we see each XML document instance as a lin-
earized string or a set of fokens (including the document
text itself). Each component is then a text region or a
contiguous subset of the entire linearized string. The

linearized string of the example document in Figure  is
shown below:

<articles><fno>fno</fno><fm><til>Til</til>
<au>Author</au></fm><bdy><abs>Abs</abs>
<sec>Sec</sec></bdy></articles>

A text region a can be identified by its starting point s,
and ending point e, within the entire linearized string.
Figure 4a visualizes the start point and end point num-
bering for the example XML document and we can see,
for example, that the bdy-region can be identified with
the closed interval [12..37]. We have visualized the com-
plete region set of the example XML document in Fig-
ure 4b. The index terms present in the content text of
the XML document are encoded as text regions with a
length of 1 position and stored in a separate relation, the
word index W.

For completeness, we give the formal definition for
an XML data region as used in our system below.

Definition 3.1. An XML data region r is defined as a
five-tuple (o, Sr, €, tr, D), Where:

e o, € oid denotes a unique node identifier for re-
gion r;

e s, and e, represent the start and end positions of
the text region r respectively;

e t,. € string is the node name of region r;

e p, € oid is the identifier of the parent region of
region r.

We also define the node index AV as the projection of o,
over the set of all indexed regions.

3.2 Document Manipulation

The linearized string view enabled us to use theory and
practice from the area of text region algebras [7, &, 4,
13, 15, 14] for selection and manipulation of (sets of)
text regions. Table | summarizes the operators in our
system. The containment operation a O b determines if
the region a contains some other region b, length gives
the length of a region including markup and textlength
gives the length of a region excluding markup. Anal-
ogous join operators are defined on region sets (A and
B).

The use of text regions shows us efficient implemen-
tation possibilities. Generating the transitive closure of
a region a requires a contains-operation, a selection on
the word index W with lower and upper bounds s, and
eq. Generating the original XML structure of a (sub-)
document d encompasses:
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Figure 4: Region indexing of XML documents

Table 1: Region and region set operators (the set oper-
ators are given in comprehension syntax [©]). Note that

Table 2: Experimentation scenarios

s, and e, denote the starting and ending positions of | Scenario | Retr. Unit Dimension(s) |
region 7. Vi {tr('article’)} | topicality
Va {tr('*")} topicality
[ Operator | Definition Vs {tr('+")} top., quant.(500)
a22b true <= sp 2 saNe <€ Vi {tr("+)} top., quant.(2516)
adb true <= s> s.N€p <€ Vs {tr("+")} top., quant.(5106)
length(a) €a— 8o+ 1
textlength(a) | |[{a} m5 W)
Awx> B {(04,0p)| @ — A, b« B, a Db}
Ax- B {(0ay08)| @ — A, b B,a>b} | 4 Experiments
length(A) {(0q,length(a))|a — A}
testlength(A) | {(0a, textlength(a))| a — A} We designed three experimentation scenarios. The

e a containment operation on the node index
N to retrieve all descendant nodes of d:
desc := {d} 3 M. The containment is non-
proper since we want the root element d in the set
as well;

e a (proper) containment operation on the
word index W to retrieve all context text:
text := {d} x5 W,

¢ a union of desc and text, followed by sorting and
some string manipulation for finalization.

Note that the approach outlined in this subsection
is similar to the preordering and post-ordering ap-
proach for acceleration of XPath queries, proposed by
Grust [10] (we consider Grust’s approach a specific
instance of general text region algebras, as is ours).

first scenario represents the baseline scenario of *flat-
document’ retrieval, i.e. retrieval of documents which
possess no structure. After examination of the document
collection, we decided to perform retrieval of article-
components. The second scenario regarded all subtrees
or transitive closures in the collection as separate docu-
ments. For the third scenario we re-used the result sets
of the second run and used a log-normal distribution to
model the quantity dimension. To penalize the retrieval
of extremely long document components (this in con-
trast with the language model that assigns a higher prob-
ability to longer documents), as well as extremely short
document components, we set the mean at 500 (repre-
senting a user with a preference for components of 500
words). We summarized our experimentation scenarios
in Table 2. Also note that we focused on content-only
queries only (i.e. we used the same approach for content-
and-structure queries).

The official recall-precision graphs of our three sub-
mitted runs are presented in Figures 5a through 5f. The
recall-precision graphs are constructed after mapping
relevance/coverage combinations to a binary scale. The
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(b) Scenario 2 (Component retrieval)

INEX 2002: Component run (V2)
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INEX 2002: Cov. modified run (V3)

Quantization: strict; topics: CO
average precision: 0.033

(empty topic results ignored)
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Figure 5: Recall - precision graphs for our experimentation scenarios, CO-topics only (first row: strict evaluation,
second row: generalized evaluation).

INEX 2002: Modified Quantity (V4)

quantization: strict; topics: CO
average precision: 0.052
(empty topic results ignored)

INEX 2002: Modified Quantity (V5)

quantization: generalized; topics: CO
average precision: 0.056
(empty topic results ignored)
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(2) Additional run Vy (strict), with
preferred component size set at 2516
words

(b) Additional run V5 (generalized),
with preferred component size set at
5106 words

Figure 6: Recall-precision figures for additional runs 4 and 5.



mapping function for strict evaluation is:

1 if3E
0 otherwise

strice (T, €) = {

The mapping function for generalized evaluation is:

1.0 if3E
0.75 if3{L,S},2E
fyeneratizea(r,¢) = { 0.50 if 1E, 2L, 28
0.25 if1S, 1L
0.00 ifON

4.1 An Informal Analysis

A more detailed analysis of the evaluation results for
all three runs showed us two observations that triggered
our curiosity. The first observation was that for many
topics, far more relevant components exist than the re-
sult set size could fit. Traditional retrieval collections
constructed in the Cranfield tradition contain a small
amount of relevant documents in the collection (at least,
the amount of relevant documents per query is much
smaller than the result set size). This small amount of
relevant documents enables a ‘perfect’ retrieval system
to retrieve all relevant documents in the result set, which
in turn enables the calculation of system (and run) com-
parable recall-precision graphs.

However, with a large discrepancy between number
of relevant documents and the result set size, higher per-
centages of recall could never be reached, causing mean-
ingless recall-precision curves. To illustrate this effect
further, consider the following example. Let us assume
we have a query that has 1000 relevant documents in
the collection. The result set size is set at 100 docu-
ments. When we determine a precision-recall graph for
this query, we will see that after 0.1 recall we get preci-
sion values which say nothing meaningful about the per-
formance of a system. Even if all results in the result set
are relevant (we will reach maximum precision at 0.1 re-
call), the precision values at higher levels of recall will
always decrease, simply because no more documents
have been retrieved (resulting in an average precision of
33% instead of 100%).

For fair evaluation, we can follow two possible paths.
Firstly, we can use a measure that is invariant with re-
gard to the difference between 1) the number of relevant
documents in the collection (for a given topic) and 2) the
result set size. A possibility would be to use precision
at various document cutoff levels, instead of precision
at various levels of recall [12].

The second observation we made was the observa-
tion that, even with the strict evaluation that is most

Table 3: Top S of node types present in the judgements
for the assessed 25 CO-topics only (strict evaluation
function). The ‘*’ denotes the any-element type.

| Node type | # relevant | #in collection | P(D) |

P 371 762.223 | 0.0004
article 308 12107 | 0.025
sec 273 69.735 | 0.0039
ss1 111 61492 | 0.0018
bdy 90 12107 | 0.0074

B [ 1360 | 8239997 | 0.0001 |

Table 4: Top 5 of node types present in the judgements
for the assessed 25 CO-topics only (generalized evalua-
tion function). The ‘*’ denotes the any-element type.

| Node type [ # relevant | #in collection | P(D) |
P 4198 762223 0.005
sec 2781 69735 0.039
article 2606 12107 0.21
bdy 1555 12107 0.12
ssl 1096 61492 0.017

E 18686 | 8239997 | 0.002 |

demanding coverage-wise, the article run (Figure 3a)
still outperformed all other runs. We had expected that
many article components would have been judged as too
large. Examination of the judgements for the assessed
CO-topics only- showed us the results in Tables } and
4. Note that the probability in the fourth column is not
the probability of a node type being relevant for all top-
ics, but the probability of a node type being relevant for
one of the assessed 25 CO-topics. Both tables show that
article-components have a much higher probability of
being relevant for one of the CO-topics, when we would
draw document components randomly from the collec-
tion. Knowing this, it is not surprising the article run
performs very well.

We make one last remark regarding our second run,
where each component was regarded as a document.
The result sets of our second run were saturated with
short document components. Looking at the language
model used for estimating topical relevance, the cause
of this saturation is clear: (query) terms occurring in
short components will receive a higher weight than
(query) terms occurring in longer components, result-

2 At the time of writing this paper, 25 CO-topics had been assessed.



ing in higher overall rankings for short components. To
remove this bias for short components, additional nor-
malization will be necessary.

4.2 Preferred Component Length

In order to see whether our subjective guess of 500
words for acceptable document components was valid,
we calculated the average length of relevant components
(relevant according to the strict and generalized eval-
uation functions): 2516 terms (strict) and 5106 terms
(generalized). We used these two means for updating
the log-normal in two additional runs V; and V5. The
recall-precision graphs of these two additional runs are
shown in Figures 6a and 6b, which aiso show that using
the new averages does improve retrieval performance,
but not radically. In short, using just document compo-
nent length seems too naive for estimation of component
coverage.

5 Conclusions and Future Work

Our participation in INEX can be summed up as an ex-
ercise in applying current and state of the art informa-
tion retrieval technology to a structured document col-
lection. In hindsight, we have not looked deeply into
the possibilities for integrating structure, apart from de-
scribing a simple model with which structural properties
of documents can be injected into the retrieval process.
The experimental results and analysis of the assessments
and additional fourth and fifth run showed us that using
document component only is too naive an approach for
estimation of component coverage.

Future work includes more extensive experimentation
with the model described in this paper, especially in the
area of relevance feedback and research into a fair nor-
malization mechanism for removing the bias of the lan-
guage model for short components.
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